Sums of Reciprocals of Triple Binomial Coefficients

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sums of Reciprocals of Triple Binomial Coefficients

Recommended by George Andrews We investigate the integral representation of infinite sums involving the reciprocals of triple bino-mial coefficients. We also recover some wellknown properties of ζ3 and extend the range of results given by other authors.

متن کامل

Sums of Reciprocals of the Central Binomial Coefficients

We consider a set of combinatorial sums involving the reciprocals of the central binomial coefficients and try to solve (or close) them by means of generating functions. We obtain a number of results for infinite sums, in some of which the golden ratio φ appears. Besides, we close some finite sums by applying the method of coefficients to the generating functions previously obtained.

متن کامل

Moments of Reciprocals of Binomial Coefficients

We consider the distribution defined by the reciprocals of binomial coefficients and compute the corresponding moments. We find recurrence relations and the relative ordinary generating functions, which we give explicitly for the first six moments (m = 0, 1, . . . , 5). Finally we give asymptotic approximations of the moments and of related quantities.

متن کامل

General Properties Involving Reciprocals of Binomial Coefficients

0; n < m for n and m non-negative integers. Binomial coefficients play an important role in many areas of mathematics, including number theory, statistics and probability. Reciprocal binomial coefficients are also prolific in the mathematical literature and many results on reciprocals of binomial coefficient identities may be seen in the papers of Mansour [1], Pla [2], Rockett [3], Sury [5], Su...

متن کامل

On Sums of Binomial Coefficients

In this paper we study recurrences concerning the combinatorial sum [n r ] m = ∑ k≡r (mod m) (n k ) and the alternate sum ∑ k≡r (mod m)(−1) (n k ) , where m > 0, n > 0 and r are integers. For example, we show that if n > m−1 then b(m−1)/2c ∑ i=0 (−1) (m− 1− i i )[n− 2i r − i ]

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2008

ISSN: 0161-1712,1687-0425

DOI: 10.1155/2008/794181